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The regularities of the initial stage of discharge of a two-phase disperse medium from a bounded 
duct capable of longitudinal motion are established. Numerical results obtained within the 
framework of a medium with nonequilibrium for velocities and temperatures are compared with 
analytical solutions of the equilibrium mechanics of disperse systems for the case where the 
characteristic time of the process is of the order of the characteristic times of velocity and 
thermal relaxation or smaller. 

Developing new technologies of fire extinguishing based on the processes of pulsed supply of a fire- 
extinguishing powder under the action of a pressurized gas requires a comprehensive investigation of the 
mechanism of such phenomena and predictions of the performances of corresponding devices. 

A method of supply uses unsteady discharge from a duct of a two-phase medium [1-9] (a mixture 
of a pressurized gas and close-packed particles that fill the duct uniformly at the initial time). Lyubarskii 
and Ivanov [1] report results of studies of one-dimensional, two-phase flow in an immovable duct using an 
equilibrium (one-velocity approximation) flow model. Lyubarskii et al. [2] studied the effect of duct recoil on 
the parameters of one-dimensional, equilibrium, unsteady flow of a two-phase medium from the duct. The 
dynamics of discharge of a gas-disperse mLxture into a gas was studied numerically by Kazakov et al. [3] and 
Kutushev and Rudakov [4] for disperse-phase volume concentrations a2 ~< 0.16 and a2 ~- 0.7, respectively, 
within the framework of a one-dimensional model of a nonequilibrium, collision-free, two-phase medium as 
applied to the experimental conditions of [5, 6]. Vorozhtsov et al. [7] and Fedorov [8] analyzed the equations 
describing the process of sudden ejection of coal and gas taking account of desorption. Ivanov et al. [9] studied 
the unsteady discharge of a two-phase medium from an immovable cylindrical duct of finite dimensions into 
the atmosphere in a two-dimensional axisymmetric formulation within the framework of the mechanics of 
heterogeneous media; they obtained an exact solution of the corresponding model problem (one-dimensional, 
one-velocity approximation) for a two-phase medium with arbitrary concentration of the disperse phase. 

In the present study, we pose two main problems: to establish the regularities of the initial stage 
of discharge of a two-phase disperse medium from a bounded duct capable of longitudinal motion and to 
examine the validity of the one-velocity flow model for the problem considered. 

Fo rmula t ion  of  the  P rob lem.  Within the framework of conventional assumptions, the equations 
of two-dimensional plane motion of a gas-disperse medium taking into account inertial effects in flow around 
particles [10] can be written as 
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Here and below, the subscripts 1 and 2 correspond to tile parameters  of the carrier and disperse phases, the 
superscript  0 corresponds to the true values of density, and the superscript k = 1 and 2 corresponds to the 

projections of the vectors onto the directions of Cartesian coordinates. The volumetric fraction, the reduced 

density, the velocity vector, the total  and internal energies of a mass unit of the i th  phase, the gas pressure, 

and the free-fall acceleration vector are denoted by ai ,  Pi, vi ,  Ei,  ui, p, and g, respectively, Fp  and Q are the 
viscous component  of the interphase interaction force and the rate of heat exchange between the gas and the 
particles in a unit volume of the mixture,  respectively, Xm is a coefficient that  takes into account the effect of 

nonsingulari ty and nonsphericity of the particles on the a t tached-mass force (for spherical particles, Xm ~--- 1 ) ,  

and t is time. 
The  sys tem of quasilinear equations (1) is supplemented by the equations of s ta te  for an ideal, calorically 

perfect gas and incompressible solid particles and by the laws of interphase interaction [10]: 

P = (~/1 - 1)p~ "ul ~- cvT1,  U2 = c2T2, 1'1, cv, c2,p~ _ const, 

Ft,  = (3 /8 ) (a2 / r )C#plWl2 lWt2[ ,  wt2 = v t  - v2, Q -- (3/2)(o~2/r2)~tNut(T1 - T2), 

C~, = C~(Ret2,a2) ,  Nut = Nu t (Re t2 ,P r t ) ,  Her2 = 2rp~ Prt  =cv~f lp t /At .  

Here T1 and T2 are the temperatures  of the carrier phase and the particles, 3'1, cv, and c2 are the adiabatic 
exponent ,  the specific heat of the gas with constant  volume, and the specific heat of the particles, Re12 and 
Pr l  are the Reynolds and Prandt l  numbers,  Nul is the Nusselt number,  which is determined empirically as a 
function of the former two numbers [11], Cp is the interphase-friction coefficient determined empirically [12], 

#t  and A1 are the dynamic viscosity and thermal  conductivity of the gas, respectively, and r is the particle 

radius. 
At the initial time, the duct contains an immovable mixture of the pressurized gas and the dispersed 

particles, and outside the duct there is an unper tubed  a tmosphere  with parameters  denoted by subscripts 0 

and a, respectively: 

P = P0, T1 = T2 = To, a l  = alo,  Vl = v2 = 0, 

P = Pc, Z l  = 72 ---- r e ,  a l  = 1, v l  = v2 = 0. 

Rupture  of the diaphragm separating the gas-disperse mixture from the ambient a tmosphere  causes 

discharge of the two-phase medium and motion of the duct in the opposite direction under a certain law, 

which are to be calculated. The problem is solved for the following initial data: P0 = 5 MPa, Pa = 0.1 MPa, 

Tio = T/a = 293 K, a m  = 0.4, a l a  = 1, "Yl = 1.4, #1 = 1.8- 10 -5 P a . s e c ,  AI = 0.025 W / ( m . s e c ) ,  
R1 = 287 J / ( k g .  K) (R1 is the gas constant),  Cv = 716 m2/(sec 2 �9 K), r = 100 #m, p0 = 2600 k g / m  3, 

c2 = 710 m2/(sec 2 �9 K). The length and width of the duct are 1 and 0.8 m, respectively. 

The boundary  conditions of the problem are specified as follows: v~ = 0 and v.~ = Vc at the walls and 

bo t tom,  respectively (the superscript  n denotes the normal  velocity components  of the i th phase; vc(t) is the 
velocity of the bot tom) ,  and the initial conditions are specified at infinity. In the present work, two laws of 
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motion vc(t) are considered: the duct begins to move with constant speed vc(t) = Vc -- const or under the 
action of internal pressure p on the bot tom (the Lagrange problem): 

dvc / 
m dt = -  p d F  

F 

(m and F are the mass of the duct and the bo t tom area, respectively). The formulated problem is solved 
by the method of increased stability [13]. The  calculations were performed on one-dimensional and two- 
dimensional grids having 402 and 202 • 102 cells, respectively. Since numerical integration of system (1) was 
performed in Eulerian variables, a special algorithm, similar to the one of [14], was employed to calculate 
the velocity and t ra jectory of the movable wall (the duct bot tom) and to specify the appropriate boundary  
conditions. The quality of the algorithm was checked by comparing the numerical and exact solutions of the 
classical Lagrange problem of the projection of a piston by a perfect gas. For the initial da ta  used in the 
present work, the error of the computed velocity of the duct bo t tom was less than 0.1%. 

S o m e  R e s u l t s .  At the initial time, the diaphragm separating the mixture of the pressurized gas and 
the particles from the unperturbed gas is instantaneously removed, and this leads to decay of the discontinuity 
of the initial conditions. As a result, a rarefaction wave propagates from the duct exit to its bo t tom (to the 
left), and the two-phase medium flows in the opposite direction (to the right). 

Within the framework of the model of a one-velocity, two-phase medium with an arbi t rary concentration 
of the disperse phase, the solution in the field of the centered rarefaction wave is given by the formula of [9] 
in which the polytropic exponent should be replaced: 

R = -  XlR1 
(2) 

__XCl = aloaotw 1 +-~ m [ ( 1 + _ _  
~0 

7 +  1 mo aot~ 2/(~+l) ] xo 
m 7 J - 1  + T '  

(3) 

xo 

f ( v )  = -V  + "Y moa---  - +----[   oao" r 

Here the subscript 0 refers to the parameter  values at the initial time, v is the velocity of the two-phase 
mixture, m0 is the mass of the two-phase mixture  in the duct at the initial time, l, Vc, xc, and x0 are the 
length of the duct  (the cross-sectional area is taken to be unity),  the velocity, and coordinates of the duct 

bo t tom at times t ~> 0 and at the initial time, respectively. 
Usually, the validity of the above limiting schemes for calculation of wave processes in two-phase 

disperse media is established from estimates of the characteristic times of velocity and tempera ture  interphase 

relaxations [10]: 

t (v) = (16/3)rp~176 Re12 > 50, t (t~) = (2 /9)r2p~ Re12 < 1, 
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vc ~1o 1 +  ~/ + 1  mo aot~ - 1  w -  ' ao = , 

(xi = Pi/P, xl + x2 = 1, i = 1, 2). 

The  quanti ty 7 is equal to the adiabatic exponent  of the carrier gas ~1 in the absence of heat exchange, and 
it is equal to 72 in the limiting case of thermal equilibrium between the phases. 

After removal of the diaphragm, the duct  can move along the x axis under a certain law. When the 
duct  begins to move with a constant velocity vc(t) = Vc = const, the Riemann wave (2) propagates from the 
bo t tom to the exit. When the duct moves under the action of internal pressure on the bot tom (the Lagrange 
problem), the exact solution within the framework of equilibrium representations has the form 

dvc =-po/l~ + 7 - 1  Vcl~/~ 
x = (v + a)t + f ( v ) ,  m d--i- ~ ~ ~ ' 
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Here ael T) is the thermal  diffusivity of the i th phase and w0 is the characteristic magnitude of the initial slip of 

the phases. The  temporal  scale of the process considered here is the ratio of the duct length to the equilibrium 
velocity of sound in the two-phase mkxture 1~no. The  cases where the t ime of the process is commensurable  

to or less than  the characteristic t ime of interphase relaxation are of great interest. For example, for the 
initial da ta  given above, t (v) ~ 1 . 10 -4 sec, t (p) = 3 . 1 0  -1 sec, and l /ao = 1 .12 .10  -2 sec. The validity of 

equilibrium models of two-phase media for such situations requires additional investigation. 
Knowledge of flow parameters  at the exit f rom the high-pressure chamber  is of practical interest. One- 

dimensional calculations were performed using the model of two-velocity two-temperature  flow (1), and the 
results are compared with the above analytical solutions in the approximat ion of equal phase velocities. 

Figure l a  shows calculated (by the nonequilibrium scheme) curves of the dimensionless velocities of 

' = Vl , /ao  and the particles v~, = v2, /ao (respectively, curves 1 and 2 for an immovable duct and the gas vl,  
curves 3 and 4 for an unfastened duct moving under the action of internal pressure) versus the dimensionless 
t ime (Strouhal number) Sr = aot / l - in  the cross section [x = 0, v/, = v/(0, t)] for m / m 0  = 1. Here and below, 

the scale for the phases velocities is the initial velocity of sound a0 in the two-phase medium in a one-velocity 
approximat ion (for 7 = 72, i.e., for t empera ture  equilibrium between the phases). 

Figure lb  shows curves of the volume concentrat ion of the disperse phase a2, and the dimensionless 

p r e s s u r e / ,  = p , /Po  (respectively, curves 1 and 2 for an immovable duct and curves 3 and 4 for an unfastened 
duct) at the point x = 0 versus the Strouhal number  Sr. 

Results for the limiting cases 7 = 71 and "), = 72 are shown by the dashed and dot-and-dashed curves, 
respectively in Fig. 1. The  straight lines 5 and 6 in Fig. l a  show the dimensionless critical velocity of the 

• I mixture (v', = vl ,  = v2, ) as a function of the Strouhal number.  The straight lines 5 and 6 and 7 and 8 in 
Fig. l b  show, respectively, the volume concentrat ion of the particles a2,  and the dimensionless p r e s s u r e / ,  

calculated from formulas (2) as functions of the Strouhal number.  
The  beginning of the process is related to the characteristic t ime of interphase relaxation t (v). Next, 

slow equalization of the phase velocities (I/ao << t (~)) continues. In this case, the flow parameters  depend 

markedly on the Sr number, i.e., the wave pa t t e rn  of the process. Thus, for an unfastened duct (Fig. 1) the 
durat ion of the quasisteady regime (analog of the critical discharge of a polytropic gas or a two-phase medium 

in equilibrium) is Sr ~ 1, which is determined by arrival of the rarefaction wave related to the motion of the 

duct  bot tom.  
t Curves of the dimensionless velocity of the duct bo t t om v c = Vc/ao versus the Strouhal number  Sr 

are given in Fig. 2 for m / m o  = 1 and initial dimensionless pressure Po = PO/Pa = 5 [the solid curve 
corresponds to a calculation by the model of a two-velocity, two-phase medium, the dashed curve shows the 

analytical  solution (3) for the one-velocity model for "y = ~1, and the dot-and-dashed curve corresponds to the 

equilibrium scheme for ~ / =  "Y2]- Wi th  increase in the initial pressure, the difference between the calculated 

and analytical results decreases. 
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The influence of the initial data  of the problem, such as the radius of the dispersed particles and the 
initial pressure on the critical parameters of two-phase flow, in particular on the phase velocity, is also of 
interest. Calculations of the projection of a powder from an immovable duct are performed. Results for the 
critical section for Sr -- 1 are given in Fig. 3 (curve 1 refers to the gas velocity, curve 2 refers the particle 
velocity, and the dashed and dot-and-dashed straight lines correspond to the limiting cases 3  ̀-- 3'1 and 3  ̀-- 3`2, 
respectively). 

The  results lead to the conclusion that  over a broad range of the initial data of the problem considered 
(particle radius, initial pressure in the duct) and for characteristic times commensurable to or smaller than 

the characteristic times of velocity t (u) and thermal t~ T) relaxations, models with equilibrium for velocities 
and temperatures  apply for tentative estimation of the flow parameters. 

In the case of discharge of a gas-disperse medium from a flat duct of finite dimensions, the motion of 
the phases is two-dimensional. In the initial stage, along with the longitudinal motion behind the duct exit, 
there is expansion of the two-phase medium in the transverse rarefaction waves. We determine the position 
in t ime of the transverse-wave fronts, which are characteristics of the equations of motion of the equilibrium 
medium: 

O f  + v = a + (4) 
o-7 b--;x t o y , ,  " 

Here f ( x ,  y ,  t )  = 0 is the equation of the characteristics, v is the longitudinal velocity component of the 
equilibrium two-phase medium, and x and y are Cartesian coordinates. 

We seek a self-similar solution. Besides t, x, and y, the determining parameters of the problem should 
include only two constants with independent dimensions [15]. In this case, these are the initial pressure P0 
and density of the mixture P0. If the duct  is not fixed in the longitudinal direction and begins to move 
under the action of internal pressure by law (3), the corresponding motion of the medium in the transverse 
rarefaction waves is not self-similar because of the occurrence of a third significant constant with independent 
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dimension, i.e., the mass of the duct m. 

Let us consider the case where the duct can move longitudinally with constant velocity V~. Because 
[lie] 2 = [p0][P0] -1, the motion is self-similar. 

We introduce the new independent variables ~ = x - v c t ,  ~- = t ,  and ~ = y. In view of the aforesaid, 

the solution of the problem depends on the two variables z l  = ~ / 7  and z2 = ~/~', and (4) takes the form 

Ozl  z2 _ i t O z 2  ) " (5) 

Using v - v c  - a = Zl and v + 2 a a l / ( 7  - 1) = 2a0a10/(7 - 1) and performing t ransformations (5), for 
the centered rarefaction wave [see (2)], we obtain d z 2 2 1 d z l  = - z 2 2 1 a  + a or 

d z l  - 2 [ a $ - ( 7 - 1 ) z l / 2 ]  + 7 + 2 ( ~ 1 - 1  a8 , a S = a 0  al0 -~ . (6) 

In contrast  to the gas-dynamic problem in [16], Eq. (6) in explicit form is not integrable (since the analogy 

with the motion of a polytropic gas is not complete: the equation contains the volume concentration of the 
gas phase, which is an implicit function a l ( z l )  [9]). 

Ins tead of the equation of polytrope for the two-phase medium p ( ~ l / p )  ~' = const, which is obtained 

from the equation of s ta te  for a perfect gas and the addit ivi ty of the internal energies of tile phases, we use 
the approximat ing equation p/p~'<' = const. Then, integration of (6) subject to the conditions zi0 = 0 and 

z2o  = 0 gives the well-known expression [16] ill which the initial velocity of sound is replaced by the effective 

value a~ (for a l  = cq0 = 1), which is related to the velocity of motion of the duct: 

z22 = (3 ---2-//a~-7-~ ~- 1) 

• [t,_..~_~_ 2 a r  - t , ~ l / 2  a<~-(3-~'~)/("<~-')]o) �9 (7) 
Equat ion (7) describes the front of the transverse rarefaction wave in the range 0 ~ zl ~< z~ = v ' - v c - d ,  

where the pr ime denotes the paraineter values on the limiting characteristic of the centered rarefaction wave 

[see (2)]. 
The fronts of the transverse rarefaction waves in the region of constant two-phase flow v'  - Vc - a '  < 

" : v" J "  D - vc are given, respectively, by z l  <~ z i - Vc and in the postshock concurrent flow v '1 - Vc < z i  <<. ~i  = 

Z 2 (Z~ - -  a12)e  - ( z i - z ~ ) / a '  + a '2,  ~2 ,I - z - z  . . . .  ,,2 
. = ~2 = (z2 I - a 1 2 )  e ( 1 l)/al + a l  , (8) 

where D and al are the velocities of the shock wave and sound in the gas; the two primes correspond to the 

values on the contact surface. 
To es t imate  the validity of the approximate  solution, we calculated the relative error (in percent)  of 

the Mach number  (M1 = D / a l )  of the shock wave formed as a result of decay of the discontinuity in the 

system "disperse mixture-gas"  for 7a = 2.35. The results are given in Table 1. 
The  initial two-dimensional stage of discharge of the two-phase medium is calculated by the nonequilib- 

r ium model (1) and the results are compared with the analytical results obtained above within the f ramework 

of a one-velocity approximation.  Figure 4 shows a fragment  of the velocity field of the disperse phase (for 
volume concentrations higher than 3% of the initial value) at t = 0.0015 sec. The vertical lines show the 

characteristic surfaces (obtained analytically): ~0 is the duct  exit, ~1 is the beginning of the region of con- 

s tant  flow of the two-phase medium, ~'~ is the interface between the media, and the postshock concurrent gas 
flow is located to the right of the interface. The  solid curve shows the fronts of the transverse rarefaction 

waves calculated from formulas (7) and (8). The calculations were performed for the following initial data:  

P0 = 7.5 M P a  and Vc = - 2 5  m/sec; the remaining values are given above in the formulation of the problem. 
The ordinate of the transverse rarefaction wave front (7) adjacent to the one-dimensional centered 

Riemann wave can have a minimum, depending on the initial pressure ratio P o / P a  and the duct velocity V~. 
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TABLE 1 

po/pa AM,, % 

10 0.22 
20 0.11 
30 0.04 
40 0.20 
50 0.36 
60 0.51 
70 0.66 
8O 0.81 
90 0.95 

100 1.08 

TABLE 2 
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Fig. 4 

V c = 0  

~ 1  

19.60 5.946 
24.01 13.23 
27.72 19.63 
31.00 25.43 
33.96 30.77 
36.68 35.75 
39.21 40.43 

Vc = -10  m/sec 

~ *  ~1 

23.22 15.95 
27.62 23.23 
31.34 29.63 
34.6t 35.43 
37.57 40.77 
40.29 45.75 
42.82 50.43 

t~ ---- -25  m/sec 

~ *  ~1 
"~1 ~'1 

28.63 30.95 
33.04 38.23 
36.75 44.63 
40.02 50.43 
42.99 55.77 
45.70 60.75 
48.24 65.43 

0 1 2  X , m  

Table 2 gives values of z~ (the value of zl for which z2 has a minimum) and z~ (the position of the limiting 

characteristic) for various ~ l u e s  of PO/Pa and Vc. Obviously, the ordinate of the transverse rarefaction wave 
front has a min imum with the proviso tha t  z~ < z~. 

Thus,  the s t ructure  of the initial stage of uns teady discharge from a movable, bounded, flat duct  can 
be described as follows: in the central zone, the flow of the gas and the two-phase medium is one-dimensional 

over a finite period of time, and transverse rarefact ion waves are located from above and from below. In 

this case, if z~ > 0, all the three characteristic t ransverse rarefaction waves are present: in the region of the 
centered rarefaction wave in the two-phase medium (7), in the zone of constant flow of the two-phase medium, 

and in the postshock concurrent gas flow (8). When  z~ ~< 0 and -" "-1 > 0, two-dimensional flow is formed only 
by two waves, whose fronts are described by (8). This  is the case, for example,  with a subcritical initial 

difference in pressure and in an immovable duct. Formally, it is also possible to indicate different discharge 
pat terns ,  for example,  when a lateral rarefact ion wave is formed only in the "pure" gas. 
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